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ABSTRACT

Many discrete event simulation (DES) systems haenhbuilt using Simkit as
the underlying infrastructure. Simkit advocates @deling paradigm where DES
applications can be rapidly built with simple, ipgadent modules that are assembled in
a component-like fashion. This modeling paradigntoempasses several modeling
approaches—active role of events, entities as ew@gnt components, and chaining
components to enable interactivity—that are exoéleays of building a DES system.

This thesis is inspired by the great work achiewedhe mechanisms of the
underlying infrastructure. Detailed study of theelimg mechanisms and design patterns
was conducted. Design patterns are proven deslgtiats that embody best practices of
software-design concepts; this thesis proposes design that incorporates suitably
identified design patterns into the mechanismshef infrastructure to bring out the
elegance of design, robustness, and maintainatiiiy heighten the maturity of a
simulation engine.

The result of this research work has been a sucsessral design patterns have
been identified and incorporated into a new designthe mechanisms behind a
simulation engine. A DES application that was btolt the SEAs project was able to

switch over to run on the new simulation enginelevkeeping its business model intact.
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INTRODUCTION

A. OVERVIEW

The software industry has probably seen the mastrfating evolution in modern
human history. Historically, the software applioatiwas properly handcrafted by a
computer scientist using punch cards and queued bnge mainframe, back in the
sixties. The first software application the authmumilt was an assembly-language
subroutine that was submitted as a job to a DE@atligomputer mainframe. Today, a
software application can easily be generated autoallg on the fly through code
generators and run instantaneously once it has designed, all on a small laptop. In a
matter of decades, the advent of technology hablethaoftware applications to seep
into our daily life, rendering them indispensab&nftware development has matured
rapidly in diversity. Nevertheless, the satisfactio getting a new software design to run
on the laptop never failed to give the softwaredaligyer a sense of fulfilling joy, just as
the author was thrilled when that assembly submeutvorked. The computer scientist
would not be any less elated when that first sa#vwapplication that was handcrafted on

punch cards crunched successfully.

The first event-driven simulation application thhée author built is the arrival-
process. It is a simple, self-propelling module #wgposes the modeling approaches— in
modeling events, entities, and components—that Smmkit modeling paradigm
advocates in building a DES system. It portrayed@lastract aspect of a system. Such an
abstracted view of a system has great implicatiagst leads to endless possibilities of
how a system could be spawned out of this arrivat@ss. The behavior captured in this
independent module soon finds itself highly reusalsnd maintainable, as this
abstractedness is commonly found across most sysiEme event-driven perspective of
system analysis and the software-development approencourages simple and
independent software modules that are loosely eoup be developed. They become
easily reusable and an elegant way of building mptete system simply through
assembling of modules. These are essential qualitiduilding systems in an object-

oriented fashion.



This approach of building simulation applicatiorapidly is made possible
through an underlying simulation engine infrastowet The modeling paradigm of the
simulation engine framework determines how indepahd software module can be
built. There must be mechanisms of the simulatiogiree at play to support the
abstracted view of an independent module to rum s$elf-propelling fashion. There must
be other encompassing mechanisms working handrid tafacilitate the assembly of

many independent modules to construct a completersy

While the abstracted behavior of the arrival precsshighly reusable, a robust
simulation engine is also highly, if not more, rabie and deployable, as the mechanisms
continue to facilitate new applications to be brapidly across different domains. As one
imagines, the software engineering involved in ding the simulation engine is more
abstract and, at times, daunting. However, thefsation and challenges in engineering a
robust and elegant simulation-engine infrastructhed can bring pleasure to application

developers when their applications run is even nuytil, thrilling, and motivating.

B. MOTIVATION

Numerous research works have attempted to condpeeproblems of specific
domains. Their challenges essentially motivate theecwell on how DES simulation can

be suitably applied.

The nature of this research work, however, revohasund framework
mechanisms and the interworking of these simulagiogine mechanisms in realizing the
modeling paradigm. One challenge that motivates work is the relentless drive for
elegance in the design of these mechanisms. Elegarbe design of a piece of software
reflects the quality of engineering workmanshig jlilee a piece of art. The appreciation
and pursuit of elegance in the way mechanismsraadex is a motivating challenge. In a
robust simulation engine, there is an inevitabsle between elegance and performance.
While performance holds the key that enables mnaifon of the simulation engine,
elegance holds the key of flexibility, extensilyi/iand maintainability. The motivation in
this research work is to reexamine existing desiga provide insights on how conflicts

between performance and elegance may be averted.

2



Unlike other research that broadens the horizoDE$ across different domains,
this thesis delves into the robustness of the mmesima design in the underlying
simulation engine framework, which eventually commgnts other research works that
broaden the applicability of DES. This researclerafits to study new design concepts

that heighten the maturity of a DES simulation-eegramework infrastructure.

C. OBJECTIVES

One avenue where the element of elegance can d&&ddjinto system design is
to incorporate suitably identified design patterB®sign patterns (DPs) are not new
designs, but proven solutions that have evolved tree. They are particularly suitable

in mechanism-oriented framework systems.

The objective of this research work is to study biedavioral characteristics of
design patterns. Relevant design patterns thatappéicable to the simulation-engine
framework will be identified. A new design thateattpts to suitably incorporate design

patterns into the simulation-engine framework Wwélproposed.

A well-structured object-oriented architectureull 6f design patterns [1]. This is
one way by which the quality of a system is judffgd The elegance is reflected in the
way suitably identified design patterns that hawesrb applied, or possibly created,
produce elegance through simplicity of design,ifidity and modularity in components
that made up the architecture, and a high levalea$ability for the components that

constitute the architecture.

D. THESISORGANIZATION

Chapter Il conducts literature review on the comgaipparadigm, methodology,
modeling language, and technology that this rebesrdased on. Chapters Il and IV
present the detailed understanding on the behawbaaacteristics of design patterns that
are relevant and applicable in this work. Chaptelovks at key features of the Java
framework that have concepts similar to the medmsi of the simulation-engine
framework. Analysis of these key features revedis existence of behavioral

characteristics of DPs. Chapter VI studies some rheglules and mechanisms of the

3



current Simkit simulation-engine framework. The lgsis of the behavior established
resemblances of design pattern. Chapter VII digsusa proposed design that
incorporates design patterns for those key modamelsmechanisms, and empirical tests
and compatibility of the new design are carried. ddhapter VIII summarizes the

research carried out in this thesis.



[1.  BACKGROUND

This chapter focuses on the key elements of theaaties-event paradigm and the
basic concepts of event-graph methodology. Thegn fire theoretical background of
Simkit and are the fundamentals of this thesis wdtks is followed by a discussion of
the features of Simkit that this thesis will bekoa at. A discussion of the key features
of UML modeling language is conducted, as this wwilk be using UML extensively in
all analysis and design. Finally, a brief descaptiof design patterns as used in this

research is presented.

A. DISCRETE EVENT PARADIGM

Discrete-event simulation describes the modelin@ afystem over time, where
the system-state variables change instantaneotidgparate points in time [2]. These
specific points are where events occur. An evargci§ically a discrete event, is defined
as an instantaneous occurrence in the discretd-evetel that may change the state of
the system [2]. Discrete-event models have stajedtories that are piecewise constant
[3]. These discrete events are the points in tirherwat least one system-state variable
changes its value [3]. During an event, simulatiome stays constant and unchanged,
unlike the continuous tickling of real-time clocka discrete-event simulation, the
simulation time is an indicator of the occurrendeewents. This is the fundamental
concept on which a discrete event in a discretetewerld is built, and it leads to
viewing the simulation world entirely from the evsnperspective. This event-oriented
perspective, combined with the discreteness ofteyéras resulted in the concept of the

discrete-event paradigm within the field of modgland simulation.

While the discrete-event paradigm is event orienies still the modeling of a
system over time, particularly simulation time. Qrdfter an event has occurred is
simulation time updated to the scheduled time imnctvlan event occurred. As such, the
simulation time of a system advances between thermnces of events [3]. The idea of
time advancement, specifically simulation-time atbement, is a vital aspect of the
system. The simulation’s clock is defined as thealde in a simulation model that gives

5



the current value of simulation time [2]. It is iorpant to be aware that simulation time is
unrelated to the computational time needed to rusinaulation model [2]. The

simulation’s clock is updated with the simulatiomé of occurrence of the discrete event.
In practice, the unit of time for the simulatiorock is never stated explicitly in a model

written in the programming language [2].

There are basically two approaches to simulationetiadvancement. One
approach looks at the advancement of the simulatdock according to the time of the
next executing event [2]. Where there are sparsatevin a system or when there is a
vast difference in the simulation time of occurrerad events, the simulation time will
make large advancements as events occur. The afipgoach is a fixed-incremental
advancement of simulation time [2]. A simulatiotitee is advanced periodically at fixed
interval. Events with a big difference in time ofcorrence may need to wait for the

periodic-time advancement to elapse.

Both approaches are being adopted in the implementaf discrete-event
simulation systems. In fact, the latter conceptaofvancing a fixed increment of
simulation time is a special case of the formercepn [2]. There could be a repetitive
occurrence of events at fixed or periodic time nveis. As such, the modeling of time
advancement based on the occurrence of each nesgtitexg event is the more generic

and versatile approach.

B. EVENT GRAPH METHODOLOGY

In discrete-event simulation and modeling there #mee system-structuring
approaches [4] or worldviews: activity scanning,oqess interaction, and event
scheduling. Graphical representations like blockgthms [5], process networks [6],
activity wheel charts [7], activity lifecycle diagmns [8], and Petri-net diagrams [9] have
facilitated the proliferation of activity-scanningnd process-interactive worldviews,
which led in turn to the popularity of process modgand activity modeling as the more
common approaches in system analysis. To a ceetdient, these two conventional
approaches have been used to provide analysieat-eviven systems, even though their

focus revolves around entities and attributes. Wuofately, the true abstractedness of

6



event analysis in event-oriented systems easilgsldsecus, defeating the purpose of
system analysis. The key to facilitating qualitatigystem analysis is both correct

recognition of the nature of the system and arapptoach to analysis.

The event graph, as advocated by Schruben [4] istwmpt to establish a
graphical technique for visualizing event-orientegstem structures. This graphical
representation is simple in nature and its expoessirongly reflects the event-driven
nature of event-oriented systems. The strengtlisasimplicity has tremendous value in
enabling ease of analysis, especially in perceitmegsophistication of event-scheduling
approaches in discrete-event system simulation TAg focus of analysis using event
graphs revolves around the notions of system eyeystem-state variables influenced by
the occurrence of system events, events that deterfuture events, and events that

cancel future events.

In event-graph notation, an event that resultshim ¢thange of a system-state
variable is represented as a vertex (single ndd®).relationship between two events is
represented by a directed edge (single arc). Aticeedge contains informative notation
that indicates which event schedules or triggeesottturrence of another event, when the
scheduled or triggered event will occur, and thedttions that bring on the scheduled or

triggered event.

Figure 1 illustrates a simple scheduling of evefitsere are two vertices, event |
and event k. Event k is scheduled to occur aften¢ units have elapsed following the
occurrence of event j. This is provided that caodii is fulfilled at the point when event

j has completed its execution.

(i)

Figure 1 Simple Scheduling of an Event (From [4])

7



The strength of event graphs as a graphical repiasen lies in the simplicity
with which they enable a direct focus on the analpd the set of system events, the
relationship between these events, when an evdhbevischeduled, and the condition
that materializes the relationship. An event mdyesltile or trigger several other events.
If so, there will be several arcs out of evetd several other event vertices. An event can
be instantaneously scheduled, as illustrated irurEig2. In this case, the time-unit
notation will be completely omitted, but there abstill be condition, as illustrated in
Figure 2 that must be fulfilled for evento be scheduled.

Figure 2 Instantaneous Scheduling of an Event

An event can also be unconditionally scheduledllastrated in Figure 3. In this
case, the conditional notation will be completetyitbed but there could still be time-unit

t, as illustrated in Figure 3 that needs to elapseventk to be scheduled.

Figure 3 Unconditional Scheduling of an Event

An event can be unconditionally and instantaneossheduled, as illustrated in

Figure 4. In this case, both the time-unit notatemd conditional notation will be
omitted.



Figure 4 Unconditional, Instantaneous Scheduling of an Event

An event can schedule itself, as shown in Figurkn 3his case, aftertime unit

has elapsed and conditiors fulfilled, event will be scheduled to execute again.

(i)

Figure 5 Self-Scheduling of an Event

In event-graph methodology, while an event can deeduled, it can also be
cancelled. Figure 6 presents an event-graph repeggen showing cancellation of
events. In this case, eventvill be cancelled after time unit has elapsed following the
completion of eveni, provided that conditiom is fulfiled when eveni has completed

execution. The dotted scheduling arc indicatecémeellation of an event.

Figure 6 Cancellation of an Event (From: [4])
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The graphical representation of the system usiegtegraph methodology cannot
be misinterpreted as the program-flow chart of #ystem. An event graph is a
representation of system structure that will beduas a preliminary step in top-down
simulation-model development [4]. The graphicalation of an event graph is simple,
yet contains enough information for system analyétsent-graph methodology’s
representations provide a worldview that facilisatiee analysis of event-driven systems

with the abstractedness of events totally unveiled.

C. SIMKIT

Simkit is the discrete-event simulation (DES) eeganeated by Buss [10] at the
Naval Postgraduate School. Without a simulationirengn place, an application must
cater specifically and individually to the desigmdamplementation of when and how a
model computes—issues that in every applicatiomiregresolution. However, having
each application cater to when models computeiiweating the wheel, because under
the DES paradigm, they all implement the same quoeé approach. An application that
addresses how models compute is in fact the fogudeveloping a unique solution
fulfilling the requirements an application is bufibr. A more sensible approach in
building applications in the domain of DES is t@ndify a robust simulation engine to
address when models will compute, while the moftelas on how they will compute, so
as to address the requirement of the problem sp¥itle.an underlying simulation engine
that takes care of the core organization and trigge mechanisms, simulation-
application development by model developers is dbleconcentrate on software

modeling of the physics of their domain.

A robust simulation engine assumes the role ofgi@sgy and implementing the
core mechanisms needed to associate all applicatiodels in a generic fashion,
chaining these models altogether, identifying eatlthem according to their priorities
without discriminating or distinguishing any spéciinodel, scheduling them, and finally
triggering them to compute in an orderly and e#iiti manner. Simkit is one robust

simulation engine developed for building simulatapplications in DES.
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Simkit is written entirely in the Jay@mogramming language. Simkit consists of a
suite of Java libraries that constitute the disemtent simulation-engine framework,
where discrete-event models can be written andldeed. Unlike some other simulation
engines, in which the simulation engine and appboamodels are programmed in
different languages, Simkit-based applications geeeloped in the same language that
the simulation engine is written in. Applicationesd modeling codes are also written in
Java, enabling Simkit and Simkit-based applicatitmbe platform independent. Any
operating system that allows Java Virtual Machmeetside on the host machine will be
able to support Simkit and its applications. Thatfpkm independence of Simkit-based
applications is tied to the availability of Javatdal Machine on the host machine. Over
the years, Simkit has developed a rich set of apfin-programmer interfaces (APIS)
for models to interact with. Simkit's simulationgine framework provides several
straightforward mechanisms to allow newly developpglication models to be chained

generically to run as a single discrete-event sath executable.

Simkit as a DES simulation engine embraces theteye&ph as the underlying
methodology [10], and all the concepts of this mdtilogy have been implemented in
Simkit. In addition, through the versatility of extegraph, Simkit has extended this
methodology to include additional annotation, augtimg graphical representations to
include richer information in event scheduling. Tiedowing paragraphs will briefly
highlight the extensions to event graph that haenlncorporated in Simkit.

Event graph methodology has no restrictions omtiraber of events that can be
scheduled. In fact, several events can be schediedltaneously. In practice, when
simultaneous events occur, it makes sense to iocag the notion of priority; events
with higher priority should occur before other sdhled events. The event graph can
therefore be extended to include notation of piydevels, which are depicted within a
circle along the scheduling edge, towards thedfathe scheduling arc, as illustrated in
Figure 7 where one of the events needs a prionhottion. In this case, once evént

has completed its execution, three eventg—andk—are scheduled simultaneously as
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unconditional, instantaneous events. The annotatid?il along the scheduling edge of
eventj indicates thaj has a higher priority than eventand k, which have default

priority. Simkit ensures thatwill execute before andk.

Ce—O
N

Figure 7 Priority Scheduling of Events

In the development of an application, inevitablg #bility to perform some form
of data passing among events must be presentigthbeyond the means to schedule
events at all). This is analogous to the abilityntake function calls and the inevitable
need to pass data into the function call as funcp@arameters. Basic event-graph
representation reflects the scheduling of eventthowmt any representation of data
passing. This lack has been rectified in Simkitnbgans of data-passing notation, with
the data encased in a square along the schedugey ®owards the tail of the scheduling
arc [3]. The scheduled event will reflect a cormsging match of the data with the data
encased in brackets [3]. This is illustrated inufegy 8 with data being passed in
scheduling another event. In this case, after eydms completed it execution and
conditioni is fulfilled, eventk will be scheduled aftdrtime units have elapsed. Dajan

eventj will be set to values of data[3].
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(i)

Figure 8 Data Passing in Scheduling Events

Event-graph methodology has included the concepéveint cancellation, but
Simkit adds detailed interpretation that works sthiyo with extensions and with
scheduled events that include data passing [3[ir€i§ shows such a cancellation. In this
case, after evemthas completed execution and conditias fulfilled, the first occurrence
of eventk whose values of datamatches datp will be removed from the system. If no
such instance of evektcan be found, nothing is removed from the systahrathing
happens [3]. In the cancellation of events, data optional. When there is no daia
Simkit identifies the first occurrence of evénwith no argument and removes it from the
system. If no such instance of evéntan be found, nothing is removed and nothing
happens. This interpretation of event cancellai®ran extension of the event-graph

methodology by which Simkit brings a finer leveldstail to the concept.

(1)

p____

Figure 9 Simkit: Cancellation of an Event

The Simkit DES framework is an implementation o tEGO [11] framework,
and as such supports the key concepts of compdaset simulation modeling [12].
Simkit emphasizes several of these concepts imistegs modeling paradigm towards
component-based simulation modeling. One key isd@fenition of a single component
as a basic, monolithic programming entity [10] thdly encapsulates an independent set

of event-graph logic [11]. The mechanism of asgouja components in Simkit
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underscores that linking these components together rapid yet robust approach in
building larger, more complex systems [11]. Thebding mechanism of Simkit ensures
the possibility of loose coupling [10] and subst@nteusability among components.
Simkit's enabling mechanism relies heavily on elsshment of a common interface
among components. The following paragraphs willhhgint some key graphical
representations that Simkit incorporates to stisembdeling paradigm in the direction of

component-based simulation modeling.

Each component in Simkit has an independent setveht-graph logic. The
triggering of events within a component can causgeddency by other components, in
such a way that a system event occurring in a sotwmponent triggers the execution of
the same kind of event in another dependent oenlisy component. This is the
underlying concept of the listener mechanism, inicivhthere is an event-source
component, an event-listener component, and a tla connects the two with a
stethoscope-like [12] symbol on the source endtigure 10 component A is the event-
source component and component B is the eventéisteomponent. An event i will
trigger a similar kind of event iB. The association of these loosely coupled compsnen
allows the dependent listen®;, to sense (listen to) the triggering of events freoarce-
componentA. Simkit does not limit the number of listenersttltan tap a source
component, or, contrariwise, limit the number ofirees a listener can listen to. Nor is
there anything to prevent a component from adopéindual role as both source and

listener.

N
A > B

Figure 10 Component-Listener Mechanism
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For two components to exploit the listener mechanistrict conformity with the
exact same kind of system event must be observdubtiysource and listener. One way
to support the triggering of a specific event framevent-source component on another
specific event in the event-listener component, levi@nsuring the integrity of both,
would be a mechanism that explicitly wraps the ¢&vehhis is the concept underlying the
adapter mechanism, in which there is an event tt@rsource component, an event from
the listener, and a double line that connects W with a stethoscope-like near the
source-component end. This is illustrated in Figlitewherec is a specific event from
event-sourceA andd is a specific event from event-listenBr Occurrence ot will

trigger eventd only.

™N d
A s B

Figure 11 Component Adapter Mechanism

Application-model developers using Simkit must kndawva, basic concepts in
event-graph methodology, and Simkit's event-grapkeresions. Simkit's simulation
engine is in fact an embodiment of the DES paradigith an intricate design that
emphasizes clean dependency and considerable mgding between simulation-
engine libraries and application models. Developnoan be carried out independent of

any enhancement that needs to be implemented sirthdation-engine framework.

D. UML

The early 1990s saw a surge of interest in thecblhparadigm, and related
technologies proliferated. It was also a time whew object-oriented (OO) languages
were created, such as SmallTalk, Eiffel, C++ andaJaMany object-oriented design
methodologies and graphical representations emeegzh making its own ingenious
attempt to embrace and represent the same fundalsi@fitthe OO paradigm [13]. The
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abundance of these differing notations unfortuiaisd to much confusion and concern
about how adoption of the object-oriented paradigynsoftware developers might be

impeded as a result. The need for a unified natatias critical.

In 1997, the Unified Modeling Language (UML) wassfi formalized as UML
1.0. Proposed initially by Grady Booch, Ilvan Jaawhsand Jim Rumbaugh [13] of
Rationale Software, UML was a collaborative effarnong top industry leaders to
consolidate the best features of various OO appesam a vendor-independent, general-
purpose modeling language [14] and notation [1#)c& then, UML has been the de-
facto standard in various domains of the softwadustry and was adopted by Object
Management Group (OMG) as a bona-fide industrydstech [14] [15] [16]. UML 2.0
[14] [15] is the current release.

As the standardized notation in software modelwlglL has raised awareness of
the value of modeling in dealing with software coexgy [13]. UML is a suite of
notations that attempt to specify, visualize, anduwinent models of software systems,
including structure and design [17], to represenfuirements, relationships, and other
developmental concepts in software analysis anegaesuch that the software better
represents the system modeled. One benefit that WWkrs is a common basis for
understanding and communication among analyst&griss, and coders throughout the
process of software building, so that ideas carbétger conveyed, ambiguities better
clarified, feasibility better gauged, and contrattelivery timelines better managed.

UML 2.0 has been revised to address web-basedcafiphs and service-oriented
architectures and to account for the analysis,gdesind development phases of large-
scale software systems. UML 2.0 has emerged asaadatd for model-driven
development, which emphasizes models as the priandifgcts of software design [13],

leaving code generation mostly to abstracting aridraating technologies.

UML has several graphical-representation notationsliagrams that constitute
the key features of this modeling language. Thesgrams fall into two broad
categories: structural modeling of the system aababior modeling. Diagrams that
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belong to structural modeling of systems are classkage, object, component, and
deployment diagrams [18]. Diagrams belonging to libbavioral modeling of systems

are use-case, sequence, collaboration, stateamdctivity.

A class has been defined to describe a set of objectsstiete the same set of
specifications, constraints, and semantics [154s€ldiagrams give a static overview of
the system as they illustrate, all at a glanceatieiships among classes [18]. Class
diagrams capture essentially three relational dyosmassociation, aggregation, and
generalization—among classes in a system. Figurdldstrates thatBase class is a
generalization oDerived class;Derived class aggregatd®art class; anderived class is
associated witlPerson class. The numbers indicate the multiplicity amddmality of

instances of the relationship.

Base
name
getName()
1.* 1..%
Person Derived Part
1.4 1
Figure 12 Class diagram

A package is a collection of logically related UML elemenjiis8] and optionally
provides a namespace for this group of elements [l common practice to group
related classes into a common package. Packageadiagapture dependencies among
packages [18]. Figure 13 illustrates a DB Packdg s dependent on a transaction

package.

17



Transaction

DB

Figure 13 Package diagram

An objectdiagram shows the instances of the classes that eachdsetonThis is
useful in illustrating complicated relationshipgy.erecursive relationships among object
instances of a class [18]. Figure 14 illustrateslaject instance namelhn that belongs

to thePerson class.

(<

ohn : Person

Figure 14 Object Diagram

A component is defined as a code module; a component diagfaows the
physical analogs of a class diagram [18]. A depleyindiagram, the last element in
structural modeling of a system, shows the physamifigurations of software and
hardware. Figure 15 illustrates two nodes: servet elient. TheBuyer component,
deployed on a client node, interfaces with Ss#er component, deployed on a server

node.
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Server

Figure 15 Deployment Diagram of Components

A use-case diagram describes the system from arnextobserver's point of
view. The modeling approach in using use-case dmagris to capture what capabilities
the system has while intentionally ignoring how thgstem gets those capabilities
implemented [18]. It is closely connected to scmsaand the actors enacting in the

scenarios. Figure 16 shows @perator actor involved inNew Reservation, Modify
Reservation, andDelete Reservation use cases.

New Reservation

Operator \

\
\
A\ .
\ Delete Reservation

Figure 16 A Use-Case Diagram
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A sequence diagram is an interaction diagram thetiates the operations that
will take place among objects or classes [18]. €hgra notion of the passage of time as
it illustrates the sequence of interaction amoregéhelements. In Figure 17 tRerson
class incites thdrecord-Manager class to create a new record. TRecord-Manager
class then creates a record in a sequential mamhercollaboration diagram is another
form of interaction diagram [18]. The sequence floveollaboration diagrams, however,
focuses on the role of objects. There is no reégindo ensure sequential flow of time in
sequences that link objects.

Person Record Manager

Create New Record

new Record

Figure 17 Sequence Diagram

UML 2.0 is now a standard for rich modeling featumrganized as a language-
modeling architecture [13]. Its versatility has ednodularity and a gradual approach to
adoption. It encourages the user to learn and apyitable subset of UML modeling
features that best support a problem domain, ratieer to master the full extent of the
language. As the experience and knowledge of bwhsystem and modeling language
grow, rich new capabilities can be harnessed taesspintricacies. UML has been
applied widely in many domains, including direct adebng of software architecture,
complex system interactions, flow-based applicatmodels, business processes, and
system engineering [13]. The flexibility of the farage has seen its applicability across
many platforms [14], ranging from small, individusdftware modules to large, complex

software systems of systems.
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E. DESIGN PATTERNS

In computer science, particularly in software eegiing, the idea of design
patterns took off in the late 1990s and was ubaysity applied across multiple industrial
domains. Perhaps only a few remember that desitiarpa actually originated with the
collecting of architectural concepts pursued by fhmerican architect Christopher

Alexander, whose field was civilian architectur@][1

Gammaet al [1] define design patterns as simple and elegahitisns to
problems in object-oriented software design [1]siDe patterns are, in fact, not newly
crafted designs for new problems. They are provelntisns that evolved out of
programming pain and success in the many systemsliaped their existence. A design
pattern can be considered a general, repeatablgiosolthat can be applied to the
recognizable, repeatable problems that occur irryevew problem space. Design
patterns are created to record instances of gosmjrdén object-oriented software, so
they can be reapplied rather than rediscoveredy Wage created in the expectation that

good design and successful architecture are rdagcla
Christopher Alexander describes design patterrisliasvs:

Each pattern describes a problem which occurs avérover again in our
environment and then describes the core of theisaolto that problem, in
such a way that you can use this solution a miliomes over, without
ever doing it the same way twice [19].

A design pattern is not the first few designs @dats a software solution. Design
patterns are a slow outcome, as developers exptareds and rounds of redesign,
striving to achieve higher reusability and flexiyl The ability of a solution to be
applicable time and again in new-yet-familiar sitoias is what makes a solution a design
pattern. A design pattern is therefore not a pigiceode. One might say that a design
pattern captures the gist of a solution [1]. Applyiapt patterns to problems truly
transforms object-oriented designs, making themenfieible [1], simple, elegant, and
optimally reusable. At the analysis phase, applyglgvant design patterns can help in

choosing design alternatives that make a systesabdel and avoiding alternatives that
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compromise reusability [1]. To a certain extentsige patterns may even improve the

documentation of software systems, and thus bduieétpmaintaining existing systems.

Design patterns are neither specific algorithm glesilike a FIFO queue, nor a
linked list, nor complex, domain-specific desigons &n application. Design patterns are
descriptions of communicating objects and clasd¢shiat portray a generally reusable
solution to a design problem. A design patternrabst and identifies the key aspects of a
common design structure and makes it useful foatorg a reusable object-oriented
design [1].

The many design patterns that have been documeéentéte “Gang of Four” [1]
fall broadly into three categories: creationalystural, and behavioral, according to their
purpose. It is no surprise that design patternsam@icable as useful solutions for
different problems among components of the Simkmhugation engine. Simkit's
simulation engine is an object-oriented architextumplemented as a DES framework
that supports the rapid development of DES simutagipplications. The introduction of
design patterns into Simkit design would heightie& maturity of its architecture as a
DES framework, elevate its elegance in terms of haeistic simplicity and
maintainability, and propel the flexibility and sability of the various core components

towards optimal reusability.
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I11. CREATIONAL DESIGN PATTERN

This chapter conducts detailed discussion of twgigiepatterns that belong to the
creational category. The approach is to focus @nsituation that each design pattern
arises, its applicability and its design structdceillustrate its characteristics. These two

design patterns have been suitably applied in és&ggd work of this thesis research.

A. FACTORY DESIGN PATTERN
1. Situation

In building a software application in an objectemted fashion from scratch,
every class instance (object) is instantiated fribie respective concrete class that is
being designed for the application. In buildingadtware application using a (software)
framework, it is still the responsibility of theainework to instantiate every object from
the required concrete class. However, a framewarklavnot be aware of the newly
designed concrete classes that a new applicatiedsnebecause the framework was
created a priori. The framework knows, nevertheledgen an object of its respective
concrete class that the application needs must nséantiated and manages the
relationship among these objects, while unawarevltdt concrete classes will ever be
written. For a framework, a dilemma [1] exists waéhan unknown specific concrete class
needs to be contacted to instantiate an object.vixyeto solve this dilemma would be a
means to encapsulate the knowledge of which speciincrete class is needed to
instantiate the object and move this knowledge afuhe framework [1]. The need to
unveil this encapsulated knowledge would be deldyetthe point when the object needs
to be instantiated. This is the situation where fdoory design pattern was meant to
provide a solution to the dilemma that the framéwancounters.

2. I ntent

The intent of using a factory design pattern isléfine an interface—the factory
method—that instantiates an object. The factoryviges the means to defer as it

delegates the subclasses—which encapsulate thé&re@dinowledge away from the

23



framework—to decide which specific concrete claswally instantiates an object [1].
This design pattern is applicable in situations rehiere is no means to anticipate the
specific concrete class to instantiate objectsreéfnd. There arises a need to localize
and delegate this responsibility to subclasseswifiabe able to carry out the task duly at
runtime. It is also applicable when subclassedraeoncrete classes that can instantiate
object while an abstract class could not. It isfulsethen the subclasses are required to

specify which specific object to instantiate.

3. Design Structure

The basic design of classes of the factory desagiem is illustrated in Figure 18.
The BaseClass andClient classes are abstract classes of the framevBadeClass is the
factory class. The framework defined the means alhgClient would contacBaseClass
when an object needs to be created, as illustiayetihe dotted arrow that points into
BaseClass. CreateObjectOfRequiredClass is the factory method—the interface—that
encapsulates the required knowledge away fromrmadwork. The subclasse&Class
andBClass, are the concrete classes that will create eacheif respective objects. In
this design, sub-classifying provides the meansotdact specific concrete subclasses to
create an object when the delayed and delegatixhaxftcreating an object needs to take

place at runtime.
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\ Factory Design Pattern
\
\
\
\
\ \\\ BaseClass
createObjectOfRequiredClass( ) :
BaseClass
AClass BClass
[ > createObjectOfRequiredClass( ) : createObjectOfRequiredClass( ) <=
| BaseClass : BaseClass |
| | | |
—————— —_— e — = d
<< create Object >> << create Object >>

Figure 18 Factory Design Pattern Class Diagram (From [20])

The interaction among these classes in the facesygn pattern is illustrated in
Figure 19. The client will contact the factory mmadh—createObjectOfRequiredClass—
when it needs to create an object. This interfaitedelegate it to the rightful concrete
subclass at runtime, which has the know-how ofamisating the object.
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Client BaseClass AClass BClass

— createObjectOfRequiredClass

createObjectOfRequiredClass
»
v v v %

Figure 19 Factory-Design-Pattern Interaction Diagram

B. SINGLETON DESIGN PATTERN
1. Situation

A class in object-oriented programming defines dhstract characteristics that
are common among class instances (objects) ingtadtifrom the same class. These
objects share the same kind of attributes or ptegserand behavior. Each object owns its
own unique set of attributes or properties whilargilg some common class-level
characteristics. There are, however, situationsrevtigere should be one, and only one,
class instance of a specific class that should @xithe system, and all clients that need
to contact an object of this class should be dakdb the same object throughout the
system. One approach would be to assign a manhgsdijiact the responsibility of
instantiating the object of this class so thatchdnts will be able to access this one-and-
only object. Unfortunately, this approach is unalolgorevent accidental instantiation of
an object, and in addition, has inevitably forceerg client to be dependent on the
managerial object. While insisting on the need“torly-one” objects, there is also the
need for a clean dependency among clients in ctimggt¢his common object and
avoiding accidental instantiations in the systemthis predicament, the design of the

Singleton pattern evolved.
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2. I ntent

The intent of using a Singleton design patterroigreate a Singleton class that
will ensure that there is one, and only one, objleat will exist in the system, provide a
global means of access to this common object, aedept accidental instantiation. The
Singleton pattern is applicable in situations wherents throughout the system need a
common means of access [1]—a publicly availablehoekt-to this object. It is also
applicable in situations where the Singleton classonly takes sole ownership of, and
responsibility for, instantiating and deleting #t@mmon object, but ensures that only the

Singleton has the ability to instantiate, denying ather possibility of instantiation.

3. Design Structure

The basic class design of the Singleton desigrejais illustrated in Figure 20.
The S class is the Singleton class. The Singleton ovaesadne-and-only object that it
instantiates by means of static persistency forctmamon object and provides a globally
available method-getSngleton—for all clients to access, as illustrated by tlogted
arrow pointing into the Singleto8 class. The constructor of the Singleton classois n
available to any client except the Singleton cléasslf; as a result, no accidental

instantiation by other clients can take place. Gtvpiler would have caught it.
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Singleton Design Pattern

\A S singleton

getSingleton() : S <<static>>

1

Figure 20 Singleton-Design-Pattern Class Diagram (From: [20])
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V. BEHAVIORAL DESIGN PATTERN

This chapter conducts detailed discussion of twgigiepatterns that belong to the
behavioral category. The approach is to focus ensituation that gives rise to each
design pattern, its applicability and its desigrucure, to illustrate its characteristics.
These two design patterns have also been suitgdgled in the design work of this

research.

A. OBSERVER DESIGN PATTERN
1. Situation

Most systems have requirements and design [20]n&ed data to be computed
and the updated data to be presented in one foanaiher, whether on display or some
other medium, or even simultaneously to be reftbated made available to several other
means that the system supports. In a system wbémease modules are well organized,
modules that compute and update data are knowheadata source [20] or the subject
[1] of interest. Modules that display the latestlafed data are known as the observers
[20] [1] of the data source [20] or subject [1]. €@bvers need to pay attention and
observe the subject, because the latest updat@eatl to be picked up almost instantly.
There is a dependency [1] of the observer towahds subject. In this dependency,
however, there should be no limitation on the numifeobservers that can observe a
subject. Similarly there should not be any limaation the number of subjects that an
observer can observe. While there is a dependttioreship between a subject and its

observer, they should not be tightly coupled sn@go reduce their reusability [1].

One straightforward approach to get the latest tguddata is for each observer to
constantly check and query the subject. This is‘plod” approach. But one can imagine
the system inefficiency when the subject change= an a long while, and the many
observers making multiple checks find disappoiryingnchanged information; the
system becomes bogged down with unfruitful checkl ajuery transactions. An
alternative approach is for the subject to providéfication when it has updated its data.
This is the “push” approach. An observer estabiste dependency with the subject of
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interest—and as, and when, there is a change &) thet subject notifies all its observers.
This second approach is the more elegant and tisvtiah the observer-design pattern is

based on.

2. I ntent

The intent of the observer-design pattern is tongedind establish a one-to-many
[1] dependence between the subject and its obsgrsach that when one object—the
subject—changes state, all its dependents—the \odrserare notified and updated
automatically in an efficient fashion. The depergebetween an observer and its subject
provides the loose coupling necessary to ensutestieh retains reusability. This design
pattern applies in situations when a change toobect is needed to trigger awareness of
the change in other objects. The object triggetiregchange need not know which and
how many objects are dependent on its change.ddsign pattern is particularly useful
when there is a need to ensure loose coupling leetwbjects that are dependent on each

other.

3. Design Structure

The design of classes of the observer design paigetllustrated in Figure 21.
Subject and Observer are abstract classes. The dependenc@lsErver on Subject is
reflected by the containment relationship that dirtke subject to its observeZlient
accessesubject to request thaObserver to be notified of any changes made by the
subject [20]. This is illustrated by the dottecklimto theSubject class.ConcreteObserver
is the concrete class that is interested in anificetion of data updates by the subject.
ConcreteQubject is the concrete class that houses the data santcassumes the role of
data updater. In its updatgspncreteSubject accesses the notification method that will

inform every intereste@bserver.
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Observer Design Pattern
[
\
K Subject 0.* Observer
Attach() Update( )
Notify( )
ConcreteSubject ConcreteObserver
Update( )

Figure 21 Observer Design Pattern Class Diagram (From: [1])

The interactions among the classes in the obséersgn pattern are illustrated in
Figure 22. TheClient will make the request to th@ubject that there is an interested
Observer—ConcreteObserver. When theConcreteSubject effects an update on the data
source, it notifies th@®bserver. It is theSubject that will update th€oncreteObserver. In
fact, there could be as ma@pncreteObservers that have established the interest in the
ConcreteSubject. The Subject in this design pattern assumes the role of respgro as
many intereste@®bservers. The ConcreteSubject is unaware of and not bothered by who
and how many intereste@bservers there are. This design decouplésncreteSubject
away from ConcreteObserver, creating a weak coupling for the dependency betwe
ConcreteObserver on ConcreteSubject, so that the reusability of botboncreteObserver

andConcreteSubject is not reduced.
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Figure 22 Observer Design Pattern Interaction Diagram

B. MEDIATOR DESIGN PATTERN
1. Situation

In small systems with only a few objects interagtint is conventional that each
object refers directly to other objects that it elegls on. The straightforward referencing
is clean and simple. Reflecting these references atesign document, each line of
dependency will be readily visible. To reuse a $mgdtem module, these few classes
will be used as is. When a system consists of aewdaisses and many more objects
interacting, the conventional approach when objeeftsr to other objects that they
depend on directly is unfortunately not clean amdpte. Direct referencing of objects
reveals lots of interconnection between objects #mel objects they depend on.
Reflecting this straightforward referencing graifiic on a design document would show
cluttered cobwebs of dependencies. Such a systeomas monolithic [1]. It becomes
difficult to change the behavior of the system wHmhavior is distributed among
straightforward, but complex, interconnected classed objects. The inter-referencing

inhibits selected classes of behavior from beinged alone [20].

One approach to restoring simplicity would be todfsome intermediary object
that collects and consolidates the dependenciestioer objects. This object will be
dependent in turn only on its intermediary objebifferent collections of object
dependencies can be abstracted, such that eactt @bjehave a direct reference or

dependency on the intermediary object, while thermediary will be aware of the
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relevant dependencies among other objects andeslashis is the situation the mediator
design pattern was created for. A mediator is thermediary object that encapsulates
collective behavior and is responsible for coortintathe interactions of a group of
objects. Every object that needs to reference atbgrcts will be referencing only the
mediator. The mediator keeps interdependent objeitten a group from referring to

each other directly and explicitly, reducing theengonnectivity of lines of dependencies.

2. I ntent

The intent of the mediator design pattern is torgeén intermediary object—the
mediator—that encapsulates and addresses howd ebjects will be interacting [1].
This design promotes loose coupling, as it disagesaobjects from referring to each
other explicitly [1]. Abstracting and encapsulatithg dependencies within the mediator,
this design pattern promotes the flexibility to wamteraction among objects
independently. In fact, as a third party, the midiabject aggregates referencing to
other objects such that there is indirect dependemsong these objects. This design
pattern is applicable when an object needs to camoate with other objects in well-
defined yet complex ways. It is useful to applystliesign pattern on a seemingly
unstructured set of interdependencies among objetta system. With adequate
abstraction and encapsulation of collective depecyldehavior into the mediator, the
behavior of the system becomes easily customizablebjects and classes become more

independently reusable.

3. Design Structure

The design of classes of the mediator design patteillustrated in Figure 23.
The Colleague abstract class anbllediator abstract class define the single simple and
clean dependency of @olleague object on aMediator object. ConcreteColleague 1
through ConcreteColleague n  are concrete classes whose objects have
interdependencies. Th€oncreteMediator is a concrete class that aggregates the
references to all the interdependent concrete edagsn object of th€oncreteMediator
class will be aware of the dependencies for itpeesve Colleague object. In this way,
this design provides the means to flexibly varyititeractivity among objects. While the
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ConcreteMediator class in this design facilitates the flexibility @efining dependencies
among objectsConcreteColleague 1 throughConcreteColleague n class, each of which
defines unique behaviors, they are now individualtyore customizable and

independently reusable.

Mediator Design Pattern

Colleague Mediator

f f

ConcreteMediator

ConcreteColleague 1 " = om ConcreteColleague_n

Figure 23 Mediator Design Pattern Class Diagram (After: [20])

The interaction among classes of the mediator depgftern is illustrated in
Figure 24. With the containment relationship thatablishes the dependency of the
Colleague abstract class on theMediator abstract class, an object of
ConcreteColleague 1 would reference it€oncreteMediator object, which would in turn
reference other objects that the object @increteObject 1 has dependencies on.
Concrete_Colleague 1 till ConcreteColleague n are concrete classes whose respective
objects also have the access to the mediatingofolleeir respectiveConcreteMediator

object.
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Figure 24 Mediator Design Pattern Interaction Diagram (Af{@0])

35




THIS PAGE INTENTIONALLY LEFT BLANK

36



V. JAVA LISTENER MECHANISM

This chapter looks at two kinds of listener mechans in Java. The discussion
focuses on understanding the concept and desigraaf Java listener mechanism and
identifies what design patterns have actually beeorporated. This is helpful in the
understanding of what and how design patterns baea used while Simkit's modeling

paradigm advocates its concept of listener mechanis

A. ACTION-LISTENER MECHANISM
1 Concept

Theaction listener is a Java interface for receiving an action ey2h}, that is, a
specific kind of event that reflects the occurrefieg] of a component action that the
Java framework supports. In Java framework, anteierepresented by an object that
gives information about the event and identifies ¢élwent source [32]. Event sources are
often components, models, or any other kind of alileat can be an event source [32].
An object capable of generating events is the eseutce, while an object interested in
the events of an event source is an event listéreevent source can be associated with
multiple event listeners. Similarly, an event lrgte can be associated with multiple event
sources. This many-to-many relationship betweemteseurce and event listener is the
event model concept of Java framework [32]. Thisdetas inherent in each of the
different kinds of events supported in Java framéwmcluding the action event—event

source—and its corresponding action listener—elistaner.

A component, specifically theComponent class in Java framework, is defined as
an object that has a graphical representationdéwatbe displayed on the user interface
(Ul) and can interact with the user, capturing tg@cific actions [21]. Each action, e.g.,
mouse clicks and keyboard entries, that the Ul ammept accomplishes with the user is a
component action that is encapsulated in an aev@m object. The component is the
event source of action events. Any object whossesclmplements the action interface
will be able to register itself as an action ligenvith the component that generates
action events. Whenever a user-specific action rg¢cthe action-listener object is
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notified of the user action in the form of an aotevent. In this way, the action listener is
given the chance to encapsulate application-spediinctionality and behavior in

response to user-specific actions, through the dwhponent. In the Java framework,
there are several Ul components that can captweeinteractions into an action event.

They are théutton andList components.

A class—specifically, an application class—whosgecis need to register as
action listeners will have to define thetionPerformed method, as specified by the
action-listener interface. The information in a ispecific action that is captured as an
action event will be available to the applicatidmough this method as a parameter,
allowing application behavior to respond to usetioms as required. This is the
mechanism that Java framework uses to facilitadeathplication’s defining behaviors in

response to user actions.

2. Design Structure

The class design in the Java framework that supbet action-listener interface
is illustrated in Figure 25. ThactionListener interface belongs to thiava.awt package.
This interface is a subclass of tEgentListener interface that belongs to thiava.util
package. Th&utton andList are Ul Component classes that subclass f@mmmponent
class. These classes are part of the pre-definedfdd¢l Component classes that Java
framework has created and grouped underJéva.awt package. ThéctionEvent class
that is a subclass of thAWTEvent class is defined and grouped Java.awt.event
package. There is a dependency byAtonListener interface on thigctionEvent class.
The Application uses thelava.awt package and implements tAetionListener interface.
Each event source—thButton and List objects respectively—can be associated with
many event listeners bActionListener. The event listener—th&pplication object—can
be associated with many event sources—wheBwgton objects orList objects—

independently.
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Figure 25

Java Action-Listener Class Diagram

3. I ncorporated Design Patterns

The mechanisms inside the Java framework make alpinde of interfaces. The
Java action-listener mechanism discussed earleillogtrated how its interface is used
in the design of its mechanism. Although the desifjdesign patterns involved only OO
classes, by analyzing the behavior of the Javaratistener mechanism and design
patterns, the presence of design-pattern behani@ction-listener mechanisms can be
identified. The action-listener mechanism of theaJaamework has in fact incorporated

two design patterns: the observer and the mediator.
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The analysis of the Java action-listener mechanisitere its behavior
incorporated the observer design pattern is ildstt in Figure 26. In the observer design
pattern, the concrete observer will establishirtk Wwith the concrete subject containing
the data of interest through an attachment setggegs. In Java’s action-listener
mechanism, the application will also need to eghbits link with the Ul component

through the action-listener registration-setup pssc

During runtime, the concrete observer is notifidfddugh its update method) by
the concrete subject, whenever this subject ofestehas an updated data. This behavior
has its correspondence in the Java action list®here the application’s action listener is
notified through itsActionPerformed method by Ul componerButton when a user-
specific action occurred. Both the observer desmgttern and the action-listener
mechanism push out the change to the concretevarseand application, respectively.

As the concrete subject pushes out notificationtdoconcrete observers, it is
unaware of the number of concrete observers argpemtent of each specific concrete
observer. In similar fashion, the Ul compon8atton is aware neither of the number of
action listeners it needs to notify nor of the sfpeaction listener it is notifying.

This relationship has allowed Ul components to &éeetbped independently from
the application, and there is optimal reusabilify W components across different
applications. The independence of the Ul comporert the application reflects the
loose-coupling characteristics that the observer d2lWocates between the concrete
subject and its concrete observers, in order tditkte independence and ensure high

reusability.

Figure 26 illustrates the key classeButton and Application—and interface—
ActionListener—of the Java action-listener mechanism and theespanding classes—
Subject, ConcreteSubject, Observer and ConcreteObserver—from the observer design
pattern that the mechanism has incorporated. Figéralso illustrates the relationships
among the classes that reflect the behavior obtiserver design pattern that has been
identified.
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Figure 26 Observer Design Pattern in Java Action-Listener hMetsm

The analysis of the Java action-listener mechanisitere its behavior
incorporates [20] the mediator DP is illustratedrigure 27. In the mediator pattern, once
it is set up, each concrete colleagu@encreteColleaguel and ConcreteColleague2—
contacts the mediator individually and independeriti the Java action listener, the Ul
components-Button and List—contacts the ActionListener individually and

independently once the setup is completed.

The mediator design pattern advocates that ammetgiate object will collect and
consolidate the dependencies among objects thattardependent on each other. This is
the design that reduces the interconnectivity antbege interdependent objects. In this
way, onlyConcreteMediate is aware of interactions among these interdeperulgacts.
ConcreteMediate also has the flexibility to vary the interactivigmong objects. This
behavior can be identified in the design of theaJaetion-listener mechanism, which
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advocates that the application define the behavidnow the Ul components will be
affected as a response to different user-speatfiorss from each Ul component. Each
application has the flexibility to vary the intet@dy among interdependent Ul
components. The role of the application collectd eonsolidates the interactivity among

dependent Ul components.

Although each Ul component may be dependent onr dithtecomponents, the
Application class mediates their dependencies. In this v@gmponents is loosely
coupled and independently reusable. This loose Icmupeflects the characteristic that
the mediator design pattern advocates, which disgms direct referencing among

interdependent objects.

Figure 27 illustrates the key classeSemponent, List, Button and Application—
and the interface-ActionListener—of the action listener and the corresponding elgss
Colleague, ConcreteColleaguel, ConcreteColleague2, ConcreteMediator and
Mediator—of the mediator design pattern the mechanism hegrporated. Figure 27
also illustrates the relationships among the ckadbat reflect the behavior of the
mediator DP.
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Figure 27 Mediator Design Pattern in Java’s Action-Listenezddanism

B. PROPERTY-CHANGE-LISTENER MECHANISM
1. Concept

The property-change listener is a Java interfaaeréceives the property-change
event when the Java bean has been updated. InJdaxaBeans is defined as a portable,
platform-independent, component model written & dava programming language [22].
JavaBeans architecture advocates that JavaBeagan(“in short) has to be a reusable,
portable and platform-independent component that ba used in applets, java
applications, and in building composite componehhe JavaBeans specification
indicates that the dynamic nature of bean will supfhe use of property sheet or a bean
customizer, such that bean’s property can be cuztmrand modified in design mode.
Most Java components are built to meet the JavaBgaecification. All Ul components

in Java framework are beans. In Java, there egistLH components that are also beans.
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They can be discovered, customized, and modifiesutth the property sheet or beans
customizer. When a change in the property of a loeauars, a property-change event will

be created to capture information about the change.

In JavaBeans architecture, a property change évant that is created when there
is a change in the “bounded” or “constrained” propef a Java bean [21]. This event
contains specific information about the bean: amge, the new value that was updated
and that resulted in the creation of this event #re previous value [21]. JavaBeans
architecture adopts the event model of the Javadvwaork. The bean is the event source.
It is capable of generating property-change evemte property-change listener is
interested in receiving property-change events. amy-to-many relationship of the
event model is inherited in the JavaBeans architedietween the bean and its property-
change listener.

A class—namely, theApplication class—where the objects are interested in
receiving the property-change event notificatiamira Java bean will need to define the
PropertyChanged method, as specified in the property-change-letanterface. The
information about the update on the property of bHean will be available to the
application in the parameter, allowing the applaato respond to bean changes. This is

the mechanism that allow#gpplication to define its behavior in using beans.

2. Design Structure

The class design in the JavaBeans architecture silygports property-change
listeners is illustrated in Figure 28. TReopertyChangelListener interface belongs to the
Java.beans package. It is a subclass of tReentListener interface from theJava.util
package. It has a dependency onRhepertyChangeEvent class that resides in the same
Java.beans package. The application uses tlawa.beans package and implements the
PropertyChangelListener interface. In the Java framework, all Ul composesite beans.
There are also non-Ul components defined inJd@.awt package. These components
are the event source. The application is the diataher.
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Figure 28 Java’s Property-Change-Listener Class

3. I ncorporated Design Pattern

The behavior of the property-change listener shimdiar behavior with design
patterns. Analysis of the design and behavior @& property-change listener has

identified that it has incorporated the observer DP

Figure 29 illustrates analysis of where the obsedesign pattern has been
incorporated into the property-change-listener raa@m. In the observer DP, the
concrete observer establishes its link with thecoete subject that contains the data of
interest through an attachment-setup process.dmtbperty-change mechanism of the
JavaBeans architecture, the application that imetds the PropertyChangelistener
interface will need to register with the interestéomponent directly. This sets up the
object of theApplication to receive a property-change event when @ubponent has an
update [21].
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During runtime, the concrete observer is notififdan updated data by the
concrete subject, through iipdate method. In similar fashion, whe&omponent updates
its property, it notifiesApplication through its PropertyChange method. Both the
observer design pattern and the property-chantgnés mechanism push out the change

to the concrete observers and application.

In pushing out notification of change to concrebtservers, the concrete subject is
unaware of the number of concrete observers anepertient of any specific concrete
observer. Similarly, eacomponent of the JavaBeans architecture is not aware of the
number of property-change listeners it needs tafynator of specific property-change

listeners.

The mechanism adopted by the JavaBean architectlleavs the bean
(Components) to be developed independently from the applicatio addition to that, the
JavaBeans specification also addresses reusabifytability, and platform-
independence across applets, applications, and amtegcomponent building. This
independence between the bean and property-chastgeeks is possible because of
loose coupling in the dependency relationship, Wiksahe characteristic the observer DP

advocates for high reusability of components.

Figure 29 illustrates the key classeSemponent and Application—and
interface—PropertyChangelistener—of the property-change-listener mechanism and the
corresponding classesSencreteSubject, ConcreteObserver and Observer—from the

observer DP that the mechanism has incorporated.
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Figure 29 Observer Design Pattern in Property-Change-Listbteszhanism
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VI. CURRENT DESIGN PATTERNSIN SIMKIT

This chapter focuses on design in the randomypkickage, the intra-component
and inter-component mechanism of Simkit. The desigkey features of each module
will be illustrated in detail, followed by an anaiyg of the design implemented.

A. RANDOM NUMBER

The use of random variates is common in many agbcs. In collecting
statistical results for analysis from multiple siated runs, the use of reliable random
variate generators plays an important role. Sinhids a module that makes random
variates easily available to applications from tremework. This module allows new
random variates to be implemented to determinedhaired reliability of the source of
number generation. This section will look at thesige that makes this possible and

conducts an analysis of the design as implement&ihkit.

1 Design

A common approach most simulation applications adeghe use of random
variates in their computational models. There afferégnt characteristics of random-
variate generators. Each random-variate generat@r parameters that can create
variations in a random-number set. An applicatiam ®uild its own random-variate
generator utility or use a random-variate-generatiity so it can focus on the logic of
its business model. Applications are more intecegteusing random variates than how

these numbers are created.

Simkit has a suite of useful utilities to suppdre development of a wide variety
of simulation applications, including a package denerating different types of random
variates. This package is used extensively in SHmksed applications spanning a wide
range of application domains and is particularlgfuswhen a repetitive simulation run is

needed for statistical analysis.
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The way classes are designed in the random packsage it one of the
independent Simkit utilities that support rapid elepment. Not only is it independent of
other software packages, it can even be used bySmokit Java applications that are
only interested in harnessing the random-numbeermggion functionality. This supports
the ease with which this whole package can be cegdlarhe package contains a rich set
of different types of random number generators ancextensive variation of random
variates. The design of classes within this paclaggorts an easy approach in which
new random-number generators and new random varfiatefuture applications can be

easily created, customized and expanded.

In the random package, random-number generators beartreated through
RandomNumberFactory, while random variates can be created through
RandomVariateFactory. RandomVariateBase provides an abstraction that facilitates
different variations of random number set to bergf. This is a simple approach where
different variations of random number sets canrbated RandomVariateFactory in fact
uses random numbers created frBamdomNumber Factory. RandomVariateFactory has
a dependency oRandomNumberFactory. This is illustrated in Figure 30. It also shows
that theRandomVariateFactory has a dependency on tRandomVariate interface. This
interface holds the key signature to which eaclatian of random number variate has to
comply. Concrete random-number generators—conackiseses—can be created by
implementing theRandomVariate interface directly. Another approach would be to
subclass th&andomVariateBase abstract class. The relationship of the key iat=$ and
top-level abstract class in the random packag#uistriated in Figure 30. For a detailed
list of all the concrete classes and random-numizerates that are available, see

Appendix A.
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Figure 30 Simkit Random-Package Top-Level Class Diagram

The interaction that th€lient application would conduct in using this random
package to obtain a random variate is illustratedrigure 31. TheClient will make a
single contact on th&®andomVariateFactory to request for &andomVariate. A new
concrete subclass 8andomVariateBase (a concrete random variate) will be created and
made available to the client. The client is thugigpged with aRandomVariate that will
generate random numbers directly. The various stiegls the RandomVariateFactory

undertake, as shown in Figure 31 are encapsulatayg fiom the client.
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Figure 31 Creating Random Variates using Simkit's Random-BgekSequence
Diagram

2. Analysis

The random package is an easy approach where atffesharacteristics of
random-number generators can be created and diffeegiations of the same random-
number generator can be created easily. The dewelap of new random-number
generators and random variates can be carriechdapendently from the business logic
of the application model. The flexibility and easkquickly creating random-number
generators and random variates allow this utilagkage to grow over time as it is used

in a variety of applications.
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This package also makes requests for random nurabdrgariates easy, allowing

client applications to focus on their businessdogi

Within a single process, there is a need for alsinganagerial object to
administer a common means whereby random variatebercreated and to manage this
set of random variates. This single point of conthat manages all the random variates
falls on theRandomVariateFactory. However, the first client that requests a random
variate potentially incurs a high cost in terms af long wait while the

RandomVariateFactory discovers, loads and creates the concrete variate.

Although theRandomVariateFactory provides a single contact—tlgetl nstance
method—uwith whichClients can request for random variate, the name of thtbaodes a
misnomer. Figure 31 shows that tiikient invokes thegetinstance method of the
RandomVariateFactory to request an object frorRandomVariate. Unfortunately, the
name of this method is inclined to suggest thablgact of theRandomVariateFactory is

being requested.

B. INTRA-COMPONENT EVENT SCHEDULING

A component in Simkit is independent because itehast of self-contained event
logic within the component itself. This is made gibte through the mechanisms that
facilitate intra-component event scheduling. Thest®n of the chapter will look at the
design of the mechanism that make this possiblecanduct an analysis of this design

that has been implemented in Simkit.

1 Design

In the discrete-event paradigm, the system is pgrdeas modeling system-state
trajectories at the discrete occurrence of evefitsunning discrete-event simulation
system is the continuous scheduling and executfodistrete events that propel its
simulation execution over time. The modeling of isctete-event system will need to
define its own system-state variables and its $e¢vents where these system-state

trajectories will occur in the application.
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Each application is different in the business logfiovhen its events will occur
and the computational logic of system-state trajges in each event. How an event
should be scheduled and how the scheduled eventldshme triggered should be
unanimous across all discrete-event systems. Tdreseest addressed through a discrete-
event simulation engine framework that will defittee modeling paradigm and the
underlying mechanism in scheduling and triggeringngs. System modeling by the
applications will be able to leverage such a framwas they focus solely on their
business logic, according to the requirements @f foroblem space.

Simkit is a discrete-simulation-engine framewor&ttbupports rapid development
of a discrete-event-simulation application. At heahe simulation engine defines
mechanisms to support the scheduling of eventstladriggering of scheduled events.
An event—SmEvent—is an object that contains essential informatiboua when this
event is scheduled to occur, the data values thaespond to the arguments of this
event, and the name of the event itself. Applicatnodeling will schedule an event
while Simkit ensures the creation of events andrdered triggering of events scheduled.
In triggering a scheduled event, the appropriateygroint of an entity will be triggered.
An entity is an object whose class houses all event-execidgic. The event execution
logic defines the behavior of the entity and istrihsited among the methods of the
entity’s class. Each method—with a predefined prefivhere the business and
computation logic resides is the entry point obaesponding event. An entity in Simkit
is an independent component in which all the reglgvents and event-execution logic
reside—intra-component—and all the methods of gatitlass. This is the modeling

paradigm of the Simkit framework.

Figure 32 illustrates the classes of #mmkit package that enable the modeling
paradigm of Simkit framework. An entity’s clasgypplication Derived Sm Entity—will
be a subclass of th&@mEntityBase abstract class. This abstract class provides the
mechanism to resolve the entry point that corredpda each triggered event. An event
will be scheduled by the entity of th&pplication Derived Sm Entity class. The

mechanism of creating and schedulin§imEvent resides in th&asicSmEntity abstract
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class. TheSmEntity interface binds the entity to the event-triggermgchanism. The
Schedule manages the state of the simulation run. EbentList is the contact point to

schedule an event and also ensures ordered tmggefrall scheduled events.

simkit
BasicSimEntity <Interface>
E—— SimEntity SimEvent
waitDelay( );
Interrupt( ); handleSimEvent( ) 1
1 1.% 1
1 EventList |
1
1
SimEntityBase i
1 SimEventState
handleSimEvent( ); 1
processSimEvent( );
Schedule

Application Derived
Sim Entity

Figure 32 Simkit Event Scheduling Class Diagram

Figure 33 illustrates the interaction between thigtye of the Application Derived
Sm Entity class and the classes framkit package and the mechanism that supports
event scheduling. The business logic of Application Derived Sm Entity will access
the waitDelay method of theBasicSmEntity abstract class to schedule an event. A
SmEvent will be created and added into the list of schedutvents irEventList. The

corresponding cancellation of scheduled event Appendix B.
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Figure 33 Event Scheduling Sequence Diagram

Figure 34 illustrates the mechanism in Simkit whareevent is triggered. The
first event will be removed-popFirstEvent—from the ordered event list. TI@mEntity
will be retrieved from theSmEvent. The interface acted as the abstraction where the
SmEntityBase will be contacted to resolve the appropriate eptiynt on theApplication
Derived Sm Entity that corresponds to the event being triggered.

EventList SimEvent SimEntity SimEntityBase Appllcatlognléi)gnved Sig
popFirstEvent
retrieve SimEntity
»
Iterative 1J handIeS;mEvent > processSimEvent
find Method
Invoke method [
»
I v v

Figure 34 Event Triggering-Sequence Diagram
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2. Analysis

A study of the class diagram in Figure 32 showeak the SmEntity is an
interface that is well deployed in this design. STmterface binds the event-triggering
mechanism of the simulation engine to the entitgt it elegantly decouples the

simulation engine away from knowing the specifititgis class.

There is &chedule class as shown in Figure 32. The name, “Schedinditates
that this class has the role of scheduling andjénigg every scheduled event. However,
the class’s role is only to take care of the stHt¢he simulation system. The role of
scheduling and triggering of events falls BwentList. In addition to these two roles,
EventList stores and orders all scheduled events. It doas $bhat this class has been
loaded with multiple roles and responsibilitiestufa expansion on any functionality of

this class will require painstaking effort.

In the modeling paradigm, using Simkit event exiecuthas three distinct
portions: retrieval, triggering, and execution. ity (Application Derived Sm Entity)
assumes the role of event execution as the conmmaiatogic of system state trajectories
resides in the methods Application Derived Sm Entity class. Simkit assumes the other
two roles, of retrieving and triggering an evenigufe 34 showed that the entity
(SmEntityBase) itself is retrieved fronEmEvent. SmEntityBase then proceeds to resolve
the entry point of the entity. It becomes appatbat SmEvent is a passive placeholder
of the occurrence of an event, whiemEntityBase has an active role in the event

triggering mechanism.

C. INTER-COMPONENT EVENT SCHEDULING

Independent components in Simkit can be combinedouidd larger, more
complex system. This is made possible by the mestmarthat facilitates chained
interactivity of event scheduling across the congms assembled. This section will look
at the design that makes this possible and analizasplementation in Simkit.
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1 Design

The modeling paradigm that Simkit advocates hasttedhe development of
simulation applications that build entities tha¢ andependent components. Each entity
has its set of event-graph logic. The simulatiopligption has, in fact, comfortably built
a set of independent components that each candilg pligged into other applications
when the component meets requirements. The autoraingomponents would have
elevated the modeling paradigm further if there evsome means to link these

components to effect some chained interactivity.

The LEGO [11] framework, where each independentpmment can be linked
rapidly to build a larger complex system, has bewmorporated in Simkit framework.
Two independent components can be linked togethkeerav the event-triggering
mechanism on the source component can be propaigategger events on the listening
component. This is a simple high-level understamdin how the component-listener
mechanism works. LEGO [11] framework allowed as ynéstening components as
required to link to a source component. A comporamsumes duality as a listener on
some components and as the source component tes.offtee semantics have been
described in Chapter I, C. Simkit. The design imiSt for LEGO [11] framework
extends the event-triggering mechanism across coants—inter-componently—
through the listener mechanism. This is the apprade modeling paradigm Simkit

adopts towards component-based simulation modeling.

Figure 35 illustrates the additional class andrfates insimkit package that
implements the listener mechanism for the LEGO f[tdinework. TheSmEventSource
interface specifies the methodhofifyListeners) that the BasicSmEventSource will
implement to inform all its listener components whee scheduled event has occurred.
The SmEventListener interface specifies the methogr@cessSmEvent) that the
SmEntityBase will implement to trigger events as a listeningngmnent.
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simkit

BasicSimEntity <Interface>
R SimEntity SimEvent
waitDelay( );
Interrupt( ); handleSimEvent( ) 1 1
1 1.* 1
1 EventList
1
1
SimEntityBase .
‘ 1 SimEventState
handleSimEvent( ); 1

processSimEvent( );
Schedule

Application Derived
Sim Entity

Figure 35 Simkit Component-Listener-Class Diagram

Figure 36 illustrates the interaction between thitye of the Application Derived
Sm Entity class and th8asicSmEventSource class fromsimkit package. The entity—
source component—adds a listening component thiEng to its triggered event. The
corresponding removal of a listener component Bppendix C.
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Application Derived Sim
Entity

BasicSimEventSource

addSimEventListener

Figure 36

Simkit Adding Component Listener Sequence Diagram

Figure 37 illustrates the mechanism in Simkit wherecheduled event occurred,;

it is propagated to its listener components fomévwgggering. The event is removed as

usual. TheSmEntity is retrieved fromSmEvent. The same interface now acts as the

abstraction where th8asicSmEventSource will be contacted. The appropriate entry

point on theApplication Derived Sm Entity—listener component—that corresponds to

the occurring event will be resolved for event exim.

EventList SimEvent SimEntity

BasicSimEventSource

SimEntityBase

Application Derived Sim
Entity

popFirstEvent

Retrieve SimEntity

iterative } notifyListeners
>

>

processSimEvent

find Method

—

Invoke

method

Figure 37

Simkit Triggering-Component-Listener-Sequence Daagr




2. Analysis

Two interfaces—SimEventSource for the source component aSianEventListener
for the listener—are created to capture the differeles in the listener mechanism. It is
good design to use interfaces to distinguish th&l doles that a component can hold.
SmEventSource’s interface is implemented by an over-archiBgsicS mEventSource
abstract class whil&mEventlistener’s interface is implemented by one of the most-
derived SmEntityBase abstract class. Placing both implementations urdeommon

abstract class would have facilitated analysis.

BasicSmEventSource is a new topmost generalized class in the entifgsc
hierarchy. This may seem to suggest that this dhassabstracted some fundamental
functionality. However, the sequence diagram inuFeg37 shows a dependency of this
topmost generalized abstract class on its deribsttact class. TheotifyListener method
of the BasicSmEntitySource contacts thegorocessSmEvent method of SmEntityBase.
This dependency is facilitated through tmEventListener interface’sprocessS mEvent
method. Otherwise, there is inverse relationshiprieen the abstract classes.

The mechanism for event triggering that propagatesoss each listener
component uses thpeocessS mEvent method. The mechanism for event triggering for the
component itself uses thandleSmEvent method. TheéhandleSmEvent method in fact
uses therocessSmEvent method. Event triggering for inter- and intra-campnt could
have used one common interface, possibly rendetiegSmEventListener interface

redundant.

When a scheduled event occurs, separate stepe el/émt-triggering mechanism
are carried out intra-componently (Figure 34) folal by inter-componently (Figure 37).
The significant difference of these two steps liesthe entry point for each event
execution, since each listener component is distinom the source component. A means
to consolidate and execute all these entry poingether—perceiving all components
alike—would have sufficed, achieved with one singlep of the event-triggering

mechanism.
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D. EVENT MODELING LANGUAGE

UML is the de-facto modeling language in the sofemvadustry. This thesis work
has used UML extensively in the study of desigrigoas, Java listener mechanisms, and
Simkit. UML has a suite of powerful graphical repeatations that help analyze and
express software-design artifacts and capture #s#gd relationship and interactivity

between classes, interfaces and objects.

Event-graph methodology is a set of graphical regm&ations used to analyze and
design a DES system from an event-driven perspeciivis a powerful graphical
representation that helps analyze and design tteeactivity of events. Event-driven
perspective is an abstract form of system anatiisisdoes not have a direct mapping to a
class, interface, or object. UML diagrams of claggjuence, and activity could have been
used to represent the interactivity of events. Astidiagrams would have been the best
UML graphical representation to model event-graplyid. However event-graph
methodology advocates the means to schedule asagvetincel events. A UML activity
diagram cannot represent cancellations of eventss Tnadequacy, coupled with
considerations in using a class or object or iat®Ef would soon clutter the analysis

process and eventually loose focus on an evenéiliperspective.

In a Simkit simulation application, events are temtral and active elements in
the analysis and design of a DES. Simkit supportsrect transition from a system’s
event-graph design into its implementation as thedeting paradigm establishes a
correspondence of an event to a method (contathegvent-execution logic) residing in

the entity’s class.

A Simkit component corresponds to an object in UMidyents (and their
interactivity) of a Simkit component form the dyniamof the system, while objects (and
their methods and interactivity) form the dynamitdJML. It is possible to use a UML
interaction diagram (either a message-sequencel@boration diagram) to model the
interactivity of events, since method is the lewdl granularity that reflects the

interactivity of events. Figure 38 shows a UML naggssequence diagram of the event-
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graph logic of a component. This is when UML isdise match the granularity of an

event representation and the collaboration diageaused to reflect the dynamics of the

component.
Entity
J Enter
1
J Exit
Figure 38 UML Message-Sequence Diagram of a Component

Figure 39 shows the corresponding event-graph septation of the same
component. Figure 39 is able to presents the dysaofithe component better in terms
of the possible avenues by which an event canippgetied. This is due to the difference
in perspectives in the analysis of the dynamicsaofcomponent between UML
collaboration diagrams and event-graph diagramen&graph diagrams, which focus on
the interactivity of events, provide succinct as@yon the dynamics of the system,

making it the suitable event-modeling languageaf@ES.
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Sart
Move

Figure 39 Event-Graph Diagram Of The Same Component

Both UML and event-graph are useful modeling lamgsa Understanding the
strength of the language and the characteristitheokystem under analysis lead to the
right tool for the right job. This thesis work hasibstantial understanding of both
modeling languages, and they are used complemigntdNiL has been used to analyze
and design the simulation engine, while the desan the mechanism is an

implementation of event-graph methodology.
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VII. PROPOSED DESIGN PATTERNSFOR SIMKIT

This chapter focuses on a new design for the rangkility package, the intra-
component mechanism, and the inter-component méesharof Discrete Event
Simulation Kernel (DESK). Detailed analysis for lranodule is conducted. The design
and implementation are illustrated for each mod&la:. the random-utility package, a
discussion on empirical analysis is conducted. Iinthis chapter looks how the FPPS
application has been ported over to the DESK toverehe compatibility and
completeness of the modeling paradigm the DESKabheved.

A. RANDOM NUMBER

The random-number module is an important utility noost Simkit-based
application. The understanding on the existing glesand the analysis of its
implementation has provided insights on possibl designs. This section looks at a

proposed design for this module and discussesripeimentation in this research work.

1. Analysis

In the random package of Simkit, several key raleg their behavior have been
identified. Understanding the behaviors in the taxgsdesign of the random package and
the study of design patterns reveal that some fofrdesign patterns can be suitably

applied into this utility package.

The RandomVariateFactory provides clients a common point of contact in rthei
request to create a concrete random variate. Télepeld be only one object of the
RandomVariateFactory in the system as it manages the set of Random¥aridhe
presence of a duplicate managerial object will loafuesing to clients and, more
detrimentally, cause inconsistency in the resultsepetitive simulation runs. There is
therefore a need to avoid accidental creation isftfanagerial object. In this aspect, the
Singleton DP has behavioral characteristics that the needs of the

RandomVariateFactory managerial object.
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In applying the Singleton DP, a new random variatgory will be the Singleton
class—RVFactory Singleton class. As a Singleton class, it will\pde global access for
all clients to the one-and-only managerial objedttp manages a common set of random
variates for the entire system. This is the onljedbthat will accept requests from all
clients to create RandomVariate. Tde method is a globally accessible method to all
clients in the system. As the Singleton DP onlgwall the Singleton class itself to create
an object of this class, any accidental creatiothisf managerial object is prevented. The
design of applying the Singleton DP BxFactory is illustrated in Figure 40.

\

Singleton Design Pattern

\ S __singleton
\ getSingleton( ) : S <<s\at\c>
\
\4 RVFactory singleton
slt() : RVFactory <<static>p

Figure 40 Applying the Singleton Design Pattern for RVFact@igss Diagram

The RandomVariate holds the key interface where different random-bham
generators and random variates will be implemeniée. design of this interface plays
the critical role in binding any future client thet existingRandomVariateFactory in its

request for a random variate that might be wriitetne future.
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When a client requests a random variate, RadomVariateFactory has to
discover and load the requested concrete randomat&aglass, create that object, and
initialize it before it is made available to theedit. Figure 31 has shown that there are
several steps that are involved in creating a @acrrandom variate. The
RandomVariateFactory has assumed the role of administering a commomoapp in
creating each concrete random-variate object amgikg all the how-to hassle away
from clients. The role that administers the comneoeation of RandomVariate also
caters to any concrete random variates that willwogten in the future, while the
RandomVariateFactory has been built a priori. This analysis of the
RandomVariateFactory from Simkit's random package shows behavioral attaristic

where the factory DPs can be applied suitably @atng concrete random variates.

Applying factory design patterns, the concrete fagses are the various concrete
random-variate classes that will have the know-ludva new concrete random variate.
The RVFactory provides the mechanism such that knowledge of wbancrete random
variate to create is encapsulated and kept oudteoframework mechanism. The need to
reveal the know-how is delayed till runtime, whée tlient makes the creation request
and theRVFactory contacts the specific concrete random variate. Rieactory is able
to ensure that each RandomVariate is properlyaiiaed before it is made available to
the client. The design of classes where the fadid?yis applied is illustrated in Figure
41.
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Factory Design Pattern

\ BaseClass
\ createObjectOfRequiredClass( ) : BaseClass

\
\ RVFactory <<interface>>
\A getRVinstance( ) : RandomVariate RandomVariate

<<Abstraction>>
RVBase

A

Lr\
| ‘ \
| |
| |

Aclass Bclass

createObjectOfRequiredClass( ) : BaseClass ’7—‘ createObjectOfRequiredClass( ) : BaseClass

° Random Variate Sub-Clases ,

Figure 41 Applying Factory Design Pattern for Random Vari@tass Diagram

2. Design and I mplementation

The new design for the random package has incagubriavo design patterns.
The key classes, abstractions, and interfaceshamersin Figure 42. Th&®VFactory is
the singleton where all clients will be contactinig. will administer the creation
mechanism for concrete random variates and mairteinset for the system. Tisd
(Singleton publicly accessible method) is a reqdesthe common managerial object.
The getRVInstance (get random-variate instance) method is a reqoeshe creation of a
concrete random variate. This method is the interfthat binds, yet decouples, the
RVFactory that creates concrete random variate from thaetslidBoth these methods are

named specifically to avoid ambiguity to the clemt contacting th&VFactory.

In creating a new random variate, tR€Factory needs to discover, load, create,
and initialize that object. The first client in tegstem that requests the creation of a new

random variate has to pay the cost of delayed timdiscovering and loading the new
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random-variate class. This has led to the congideraf a pre-loading step by each
concrete random variate when the system start$hip.pre-loading step will register the
concrete random variate with tR¥Factory. During runtime, when a request is made by
any client, there is no time delay to discover &atl the concrete random-variate class
since it has been registered. This registrationelstablished a dependency by R\MBase

on theRVFactory.

RVFacto <<interface>>
RandomNumberFactory -1 slt() : RVFactory -3 > RandomVariate
getRVinstance( ) : RandomVariate

<<Abstraction>>
RVBase

Figure 42 New Random-Package Top-Level Class Diagram

Figure 43 Iillustrates the interaction between thenccete random variate
(DerivedRV), RVBase, and RVFactory in the pre-loading process. At system startup, as
each concrete random variate registers withR¥Eactory the class will be discovered

and loaded into the system.
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RV
DerivedRV RVBase Factory
(Singleton)
Static call ;
at loading
Register
(
className addPrototype
) (
className - find the Class ; using
) findFullyQualifiedNameFor( );
- add valid Class to cache
I '

Figure 43 Pre-loading of Random Variate Sequence Diagram

During runtime, when client requests the creatidnaorandom variate, the
RVFactory simply instantiate an object from its cache andailizes it accordingly, as

illustrated in Figure 44.

RV
client Factory
(Singleton)
getRVInstance
( Ladl

className

)

getRVInstance
( P>
className,
Parameters

v ) v

- retrieve Class from cache
- instantiate new instance

Figure 44 Creating Random Variate Using New Random-Packageeee Diagram
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3. Empirical Analysis

In experiments, empirical analysis of the runtineef@rmance of the proposed
package, in comparison with teenkit.random package, was conducted.

In the tests, a total of twenty random variatest thee subclasses of the
RandomVariate abstract class have been created. One objectnaestaf each the
random.RandomVariate is requested through theimkit.random package. System
performance is measured in terms of the procesgutation (CPU) time (in msec)

consumed in creating these instances.

Similarly, a total of twenty random variates thaé @subclasses of tHeVBase
abstract class have been created. One object destah eachrv.RandomVariate is
requested through the package. As the new designrinpackage splits up the creation
process into a pre-loading and a creation stepesyperformance is measured in terms
of process computation time that is consumed ferpite-loading and creation steps for

these instances.

simkit.random rv
Number of
RandomVariate CPU time (msec) CPU time (msec)
instances
Creation Pre-loading Creation

1 15 15 0

3 16 15 0

5 16 16 0

10 31 16 0

15 46 20 0

20 52 31 0

Table 1 Empirical Results ofimkit.random Package vs.v Package
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The results of empirical tests have shown thatyapgla design pattern in the
package yields a gain in system performance orptedoading step. At runtime, all
random objects that are requested, including th& fobject, incurred insignificant

computation time.

B. INTRA-COMPONENT EVENT SCHEDULING

The mechanism of the simulation engine that fatés intra-component event
scheduling makes it possible for components tsmbdependent. This section looks at the
proposed design of a new mechanism that attempitgect elements of elegance and
simplicity without compromising component indepence This section examines the

design of the new mechanism and discusses its inguitation in this research work.

1. Analysis

An understanding of Simkit and the modeling paradtpat Simkit advocates has
identified the important role the simulation engiassumes in providing unanimous
mechanisms to schedule and trigger events. Thesfaailitates the application modeling
work’s focus on the problem domain. The modelingadegm where the entity is an
independent component that houses all event-execldgic is an elegant concept within

a discrete-event-simulation framework.

A close study of the event-triggering mechanisntigure 34 has revealed that
when a scheduled event occurs, the event-execetiny point residing in the entity
(Application Derived Sm Entity) must be resolved before execution can be trightre
occur. The triggering of such an entry point i¢aat a generic step of method invocation.
One idea in designing DESK is to abstract and enthis generic step into a single
atomic object that solely invokes the method. Thallenge in this idea is finding the

means to resolve the entry point of the entity wtinenevent is scheduled.

This challenge led to the concept of a method aakbencapsulation of a method
invocation that is the entry point of event exematiof an entity. A method-callback
object executes method invocation as an atomicsacion. With a method-callback

object, method invocation is now independently debed away from the entity itself.

72



An event is still the important component from #nent-driven perspective in
modeling a DES system. The new design in DESK attkmpt to elevate the emphasis
on event in this modeling paradigm. Due considerats given to entrusting the event to
assume an active role in the event-triggering maisha This is viable when the concept
of method callback is associated with event. Whesclaeduled event occurred, the
associated method callback will directly triggee thvent-execution entry point on the
entity. This association eliminates the dependeia@vent on entity. An occurring event
now assumes an active role that encompasses ihe evgnt-triggering mechanism. The
entity now assumes a more passive role of hostiveg ystem-state variables and
business-logic behavior. The new design conce@E&$K involving method callback
has defined a finer level of granularity in atorelement of execution, as compared to
that of an entity. This new design of an activerg\and its associated method callback is
in fact a behavioral characteristic where the OleeDP has been applied. The event—
the Subject— actively notifies its method callbadke-Observer— when the scheduled
time of occurrence has arrived—the update call. d&ésign where the method callback
encases the method invocation is a neat approadeanfupling the Subject away from

the Observer.

A scheduler will be designed as the main contadhtpfor scheduling and

ordering events in order and assuming the roletwieving scheduled events to occur.

2. Design and I mplementation

The classes of the new design in DESK are illustiat Figure 45. There are two
packageseb (the event bus) package and #mt (the entity) package. Theb package
contains theEvent class. AnEvent is associated with 8CB (method-callback). The
Scheduler is the Singleton that is associated with multipdents. Theent package
contains theEntityBase abstract class. This class defines the mechanismvent
scheduling forApplication Derived Sm Entity. Theent package is dependent on the
package.
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ent > eb

EntityBase ; : Eren
scheduleEvent( ) 1 1 — Tick()
removeScheduledEvent( )

1.*
1

Scheduler

ApplicationDerived handleNextEvent( )
Sim Entity

Figure 45 DESK Event Scheduling Class Diagram

Figure 46 illustrates the interaction of the entfythe Application Derived Sm
Entity with the new classes of DESK in scheduling an evéhe entity uses the
scheduleEvent method of theEntityBase to schedule an event according to its business
logic. The MCB corresponding to the scheduled event is retridwedhe EntityBase,
which is associated to the newly crealsent object.Scheduler is contacted to insert the

scheduled event. The corresponding cancellatiacloéduled event is in Appendix B.
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Application Derived Sim .
Entity EntityBase Scheduler
scheduleEvent i
retrieve MCB
new
> Event
. addToEventMap
insertEvent
v I A4
Figure 46 DESK Event Scheduling Sequence Diagram

Figure 47 illustrates the interaction among clagsgd3ESK in handling the event-
triggering mechanism when a scheduled event océdist. the event is retrieved by the

Scheduler, the associateMICB will trigger the entry point residing on titity directly.

It illustrates the active role of the event in theswv design.

Scheduler

Event

MCB

Application Derived Sim
Entity

|

Iterative

I

execute

Invoke method

!

Figure 47
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C. INTER-COMPONENT EVENT SCHEDULING

The mechanism of the simulation engine that fatés inter-component event
scheduling makes it possible to assemble componersild larger complex systems.
This section looks at a proposed design where tehanism for intra-component event
scheduling can be easily extended to support susrponent event scheduling. The
proposed design of the new mechanism reflects &ityplextensibility, and maturity in
the framework. This section will look at the desa@frthis new mechanism and discuss its

implementation in this research work

1. Analysis

The LEGO [11] framework advocates the assemblingeafly-made components
(as is), propagating the event-triggering behavadr a component across other
components through the component-listener mechartsrform chained interactivity.
This conceptual approach of building larger compdgstem is an excellent way for
software components to be truly plug-and-play imponent-based-simulation modeling.

The new design in DESK also attempted to incorgothe concepts of LEGO
[11] framework. One key consideration is that atitgmeeds to assume a dual role as
source component and as listener. There is nodiioit on the number of listening
components that can be associated with a sourcpaent. One challenge is to devise a
common event-triggering mechanism for both intrad anter-component. Just as the
LEGO [11] concept of building larger complex systesrto use a component as is, the
underlying mechanism in incorporating LEGO concepts listener mechanisms should

also use the event-triggering mechanism comporseist a

A close study on the design of classes for DESK-igure 45 shows that the
method-callback object is decoupled away from thitye Figure 47 shows that event
triggering is carried out by the method callbaclkaasatomic transaction. Propagating the
event triggering to a component listener essemtig@buires the listener component’s
method-callback to execute. The design is easilgrsled, such that an event—the
Subject—is associated with many method callbacke-@bservers. When a scheduled
event occurs, all the method-callbacks—source astégner components alike—are
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executed. The new design in DESK simply uses thmesas-is event-triggering
mechanism to support the listener mechanism of E@O framework. This design also
shows that applying the Observer DP for the bastchanism results in a simplistic
design that supports ease of extensibility. Thagdewhere the Observer DP has been

incorporated is illustrated in Figure 48.

Observer Design Pattern
Subject
- Attach()
/’ notify
/ 8
/ \
Observer / I
e Vi
Update() / ConcreteSubject
//
EntityBase ’ os - // : Event
scheduleEvent( ) "% 11 4 Tick()
removeScheduledEvent( )
1.*
EntityComponent
addComponentListener( )
removeComponentListener( )
% 1
ConcreteObserver
Update( ) Scheduler
ApplicationDerived handleNextEvent( )
Sim Entity

Figure 48 Applying Observer DP for Intra- And Inter-Componé&hass Diagram

2. Design and I mplementation

The new abstract class=rtityComponent—is illustrated in Figure 49. This class
contains the mechanism to support establishmethiedinkage-source component and its
listener. Listeners are added into the source commo through the
addComponentListener method. TheEvent is now associated to maMCB, where each
MCB belongs to each component. Figure 49 shows teagitisting design of DESK for
intra-component event scheduling is easily extendedupport inter-component event

scheduling.
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ent e evt

EntityBase . 1 Event
scheduleEvent( ) 1 MCB Tk
removeScheduledEvent( ) 1 - ick( )
1.*
1
Scheduler
handleNextEvent( )

ApplicationEntit
Sy Component Class Diagram

Figure 49 DESK Component Listener Class Diagram

Figure 50 illustrates the interactivity betwefpplication Derived Sm Entity and
EntityComponent in adding a component listend&mtityComponent will need to retrieve
the MCB from the component listener. This abstract classaclidates thé1CB for each
event that the source component is capable of stihgdWhen an event is scheduled by
the source component, the consolidal@Bs are associated with the event that it

creates. The corresponding removal of listener @orapt is in Appendix C.
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Application Derived
Sim Entity

EntityComponent

addComponentListener

<

Add Listener MCB

to Source

Figure 50

DESK Add-Component Sequence Diagram

Figure 51 illustrates that when a scheduled everturs, the single event

triggering mechanism is carried out. EaRICB that is associated with thigvent is

triggered—source component and listener comporadifis.

Scheduler

Event

MCB

Application Derived Sim
Entity

|

Iterative

'

execute

For Each MCB
[

Invoke method

L

Figure 51

DESK Triggering Component Sequence Diagram
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The design of the EntityComponent abstract class dlao encompassed the
concept of adapter as described in Chapter I1,i@ki® The implementation is illustrated

in Appendix C.

D. DESSIMULATION APPLICATION

The new design of DESK has implemented some featwigh compatible
functionalities in Simkit. Thesb and ent packages contain the implementation for the
modeling paradigm and listener mechanism. An agbroa test out the compatibility of
the implementation in DESK is to use a DES simafatpplication that was developed
using Simkit to run on DESK without changing anyimess logic of the application. The
Force Protection and Port Security (FPPS) simuiatiat the author co-developed for the
Systems Engineering and Analysis Project 11 (SEAaht delivered in June 2007 is a
good application to test for testing the compatipibf the DESK, in terms of the

completeness of the compatible functionalities DEREK has implemented.

The FPPS simulation system attempts to addressadassues faced by the Port
of Oakland as regards unknown and impromptu threatss a busy port, and its
vulnerability has a detrimental effect on the ecugp both at the national and
international levels. Much of the effort undertalcemsisted of analysis of different kinds
of threats and an assessment of current assetieaid of readiness, proposing several
alternatives to improve the readiness of the pod @ffering cost-effectiveness analysis

of different solutions. The system identified thetorist threats would come by sea.

Figure 52 shows the event-graph that captures tisenéss logic of the FPPS

simulation application.
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Figure 52
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To port a Simkit application over to run on DESH, @mponents whose class
subclass frons mEntityBase of thesimkit package only needs to switch over to sub-class
from EntityComponent of the ent package from DESK. All implemented business logic
of the application will run seamlessly. Figure 3®ws the FPPS application where the

same business logic runs seamlessly after it hais deccessfully ported over to run on
DESK.

10T #0000

Figure 53 FPPS Simulation Application Running on DESK
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VIII. CONCLUSION

The research work in this thesis has devoted swoitistaeffort to studying and
acquiring an adequate understanding of the relenathodology, modeling language,
and state-of-the-art technology of DES. A detailedlerstanding of design patterns has
helped identify the behavioral characteristics #st inherently in Java framework and
Simkit simulation engine. These have similar comgeput the underlying behavior
showed different design patterns at play. This latablished DP relevance and
reinforced the fact that design patterns are weliigked solutions that evolve over time.

In this research, the Simkit random utility wasds¢al. The existing designed was
re-examined and a new design proposed. The newrdesv package—incorporated
relevant design patterns whose behavioral charstitsr have been suitably identified.
Empirical testing was conducted to compare andraenhtthe robustness of both the
existing and new design. The performance gaineth@fnew design showed how this
research work has met its objective of incorporatielevant design patterns and tackled

its challenge of averting the conflict between alege and performance.

This work also studied the underlying mechanismghef Simkit simulation-
engine framework. The features of the modeling gigra were reviewed in totality and
the existing mechanism designed re-examined. Agdesi DESK gb package anént
package) —was proposed, representing a new appribethincorporates a suitably
identified design pattern in the inter-workingstibé mechanisms through the concept of
method callback. A simpler design was created. inker-workings of mechanisms are
more extensible, flexible, and maintainable. Thev mesign showed how this research
work has pursued the motivating challenge of elegan mechanism design within the
simulation-engine framework. The simplicity and galece of the new design that
supports the modeling paradigm would certainly &lewhe maturity of the simulation-
engine infrastructure. An existing simulation apgtion—FPPS—from the SEA-11

project was used to demonstrate the compatibifith® new design.
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This research may be termed a success. The autisogdined much insight on
the modeling paradigm from the framework infrastinue perspective. Grasp of this work
apparently not only facilitates an understandingtloé simulation infrastructure for
simulation-application developers, but also fostars appreciation of the simulation
infrastructure for the “simulationist” working oihd internals of the simulation engine.
The satisfaction the simulationist feels in workimghin an infrastructure that advocates
rapid development of a DES system amounts to aajoy fulfillment that is beyond
thrilling.

There are many avenues for future research workdas this thesis. One
direction is other design patterns—identifying theglevance and applicability and
proposing how they may be introduced into the satioih-engine framework. Simkit has
a suite of modules, both core and utility packagesther great opportunity for follow-
on work would be re-investigating some of these ahesland proposing how new design

can add elegance, maturity, and robustness tdrthdation engine.
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APPENDIX A. RANDOM NUMBERS

RANDOM VARIATE CLASSES

RandomNumber . <<interface>>
Factory [ ] RET T R E LR 0T RandomVariate
»ob
Exponential 3 -
Tranform <<Abstraction>> <<interface>>
. — Random
RandomVariateBase . .
Exponential ObjectVariate
Variate
<<interface>>
LogTransform ARVariate }7 L Discrete
NHPoisson RandomVariate
ProcessVariate BetaVariate
NHPoisson
ProcessThinned ConstantVariate BinomialVariate
RenewelProcess
Variate
ConvolutionVariate
RightWedge
Variate
DiscreteVariate BernoulliVariate
Scaled
Variate
ExponentialVariate DiscreteUniformVariate
Triangle
Variate
GamaVariate TwoStateMarkovVariate
Sequence
Variate
InverseGaussianVariate
MixedVariate
NormalVariate TraceVariate
PearsonTypeVVariate TriangleVariate
ResampleVariate UniformVariate
Figure 54 Existing Simkit.Random package, All Random-Vari@tasses
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B.

C.

RANDOM NUMBER CLASSES

<<interface>> | = | RandomNumber
RandomNumber Factory
MersenneTwister
Antithetic
Congruential

Figure 55 Existing Simkit.Random Package, Random Numbers
INTERFACES
<<interface>> <<interface>>
simkit.Named cloneable
<<interface>>
Distribution
<<interface>> <<interface>>
Discrete Continuous
Distribution Distribution
<<interface>>
Bernoulli
Distribution
Figure 56 Existing Simkit.Random Package, All Interfaces
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APPLICATION CODE SAMPLE

/I Existing Design
/I Using simkit.random package
/I runtime request for a random variate

simkit.random.RandomVariate RandomO1Variate =
RandomVariateFactory.getinstance( “var.Random01” );

/l New Design

// Using rv package

I

I/ Pre-loading step

RVFactory.slt().preLoad( "var.RV01Derived");

// runtime request for a random variate
rv.RandomVariate RV01 = RVFactory.slt().getRVInstance("RV01Derived" );
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APPENDIX B. INTRA-COMPONENT

A. SIMKIT EVENT CANCELLATION
ApplicatioEn D_erived il BasicSimEntity EventList
ntity
interrupt( ) L
scheduleEvent
Find Event in
scheduled event list
determine matching
name and parameter
. values to remove
A scheduled event
v I
Figure 57 Existing Simkit, Cancellation of Scheduled-Eveng&ence Diagram
B. DESK ENTITY INITIALIZATION
Application Derived Sim .
Entity EntityBase Scheduler
Super() -
new > MCB
postEvent
D new
> Event
insertEvent for doRun ‘F addToEventMap
v v v v v
Figure 58 New DESK, Entity-Initialization-Routine SequenceaBram
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C. DESK EVENT CANCELLATION

Application Derived Sim

Entity EntityBase Scheduler

removeScheduledEvent 1

‘ retrieve MCB

‘ cancelEvent

new
Event

deleteEvent . .
I determine matching

name and parameter
L values to remove

scheduled event

v v v v

Figure 59 New DESK, Cancellation-of-Scheduled-Event Sequ&iagram

public boolean removeScheduledEvent( String eventName, Object... parameters )
{
boolean removeScheduleEventStatus = false;
List<CallBack> callBackList = null;
String eventNameSignatureString = createMethodSignatureString( eventName, parameters );
if( methodCBMap.containsKey( eventNameSignatureString ) )

{
callBackList = methodCBMap.get( eventNameSignatureString );
removeScheduleEventStatus = cancelEvent( eventNameSignatureString, callBackList, parameters );
}
return removeScheduleEventStatus;
}
protected static boolean cancelEvent( String eventName, List<CallBack> cbList, Object... parameters )
{

boolean cancelEventStatus = false;
DiscreteEvent cancellingEvent = new DiscreteEvent(

eventName, 0.0, parameters );
cancellingEvent.setEventSubscribers( cbList );
cancelEventStatus = Scheduler.slt().deleteEvent( cancellingEvent );
return cancelEventStatus;

Figure 60 New DESK, Cancellation-of-Scheduled-Event Code Srip
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APPENDIX C. INTER-COMPONENTS

A. SIMKIT REMOVE-EVENT LISTENER

Application Derived Sim

. BasicSimEventSource
Entity

removeSimEventListener

Lo

Figure 61 Existing Simkit, Remove-Listener-Component Sequddiegram

B. DESK REMOVE-EVENT LISTENER

Application Derived

Sim Entity EntityComponent

removeComponentListener 1

Ll

Find & Remove
Listener MCB
From Source

Figure 62 New DESK, Remove-Listener-Component Sequence Diagra
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public boolean removeComponentListener( EntityBase listener )
{
boolean removeListenerStatus = false;
Set<String> keys = methodCBMap.keySet();
for( String curEventName : keys )
{
if( inExcludeEventList( curEventName ) )
continue;
List<CallBack> curCBList = methodCBMap.get(curEventName);
CallBack thisCB = curCBList.get( 0 );
CallBack listenerCB = listener.getCallBack( curEventName );
if( thisCB.isCompatible( listenerCB ) )

if( curCBList.contains( listenerCB ))

{

removeListenerStatus =
curCBListremove( listenerCB );

}
}

return removeListenerStatus;

}

Figure 63 New DESK, Remove-Listener Component Code Snipplet

C. DESK ADD ADAPTER

Application Derived .
Sim Entity EntityComponent
adapterConnect e
Find adaptee MCB
Add to Source
v v

Figure 64 New DESK, Connect-an-Adaptee-Component Sequenag@ia
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D. DESK REMOVE ADAPTER

Application Derived .
Sim Entity EntityComponent
adapterDisconnect o
Find & Remove
adaptee MCB
< From Source
v v

Figure 65 New DESK, Remove-an-Adaptee-Component Sequencediag

public boolean adapterConnect( String sourceEvent, String adapteeEvent,
EntityComponent adaptee, Object... params )
{

boolean connectionStatus = false;

String adapteeEventSignatureString = createMethodSignatureString( adapteeEvent, params );
CallBack adapteeCB = adaptee.getCallBack( adapteeEventSignatureString );

if( adapteeCB = null )

List<CallBack> CBList = findCBList( sourceEvent, params );
if( CBList !=null)

if( !( CBList.contains( adapteeCB ) ) )
{
connectionStatus = CBList.add( adapteeCB );
}
}
}

return connectionStatus;

}

public boolean adapterDisconnect( String sourceEvent, String adapteeEvent, EntityComponent adaptee, Object... params )
{

boolean disconnectionStatus = false;

String adapteeEventSignatureString = createMethodSignatureString( adapteeEvent, params );

CallBack adapteeCB = adaptee.getCallBack( adapteeEventSignatureString );

if( adapteeCB = null )

List<CallBack> CBList = findCBList( sourceEvent, params );
if( CBList != null )

if( CBList.contains( adapteeCB ) )
{
disconnectionStatus = CBList.remove( adapteeCB );
}
}
}

return disconnectionStatus;

Figure 66 New DESK, Adapter Code Snipplet
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